Scientists find new clues about the interiors of ‘Super-Earth’ exoplanets

Artist's conception of "Super-Earth" exoplanet Kepler-22b, which is about 2.4 times larger than Earth. Credit: NASA

As we learned in science class in school, the Earth has a molten interior (the outer core) deep beneath its mantle and crust. The temperatures and pressures are increasingly extreme, the farther down you go. The liquid magmas can “melt” into different types, a process referred to as pressure-induced liquid-liquid phase separation. Graphite can turn into diamond under similar extreme pressures. Now, new research is showing that a similar process could take place inside “Super-Earth” exoplanets, rocky worlds larger than Earth, where a molten magnesium silicate interior would likely be transformed into a denser state as well…

See Universe Today for the full article.

Paul Scott Anderson is a freelance space writer with a life-long passion for space exploration and astronomy. He started his blog The Meridiani Journal in 2005, which is a chronicle of planetary exploration. He also publishes The Exoplanet Report e-paper. In 2011, he started writing about space on a freelance basis, and now also currently write for AmericaSpace and Examiner.com. He has also written for Universe Today and SpaceFlight Insider, has been published in The Mars Quarterly and has done supplementary writing for the well-known iOS app Exoplanet for iPhone and iPad.